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Abstract— We consider the problem of steering the actions
of noncooperative players in quadratic network games to the
social optimum. To this end, a central regulator modifies the
marginal returns of the players, while the players’ strategies are
determined by continuous pseudo-gradient dynamics. Depend-
ing on the available information on the players parameters and
network quantities, suitable static and dynamic intervention
protocols are devised that maximize the social welfare at steady-
state. We show that adaptive interventions can compensate
for the lack of knowledge on network topology and coupling
weights. Numerical examples are provided to demonstrate the
effectiveness of the proposed interventions.

I. INTRODUCTION

Network games are a standard tool for modeling and
studying the interaction between a population of decision
makers, i.e., players, whose individual payoffs depend on
their own decisions/actions as well as the actions of their
neighboring players, determined by an underlying interaction
network. This class of games has appeared in a broad
spectrum of applications such as studying crime networks
[1], pricing in social networks [2], [3], public good provision
[4], [5], firm competition [6], and telecommunication [7].
Influencing the outcomes of network games through inter-
ventions is extensively studied in economics, and various
works have investigated the impact of the network topology
on optimal policies, see e.g., [1], [8], [9].

From another perspective, self-interested/selfish behavior
of the players in a noncooperative game entails degradation
of performance in comparison to the scenarios where the
players would cooperate to optimize the social welfare.
Such deterioration in performance or loss of efficiency has
lead to the definition of the price of anarchy [10], and its
quantification is extensively studied in different settings such
as resource allocation [11], congestion games [12], [13], and
supply chains [14].

An active line of research concerns decreasing the price of
anarchy and realigning the preferences of the players with
the social optimum through interventions. In this setup, a
central regulator provides incentives in order to coordinate
the players and steer their strategies towards the social
optimum. The main challenge that arises in this research
topic is that suitable incentives depend on private information
of the agents, generally unknown to the regulator [15].
The celebrated Vickrey–Clarke–Groves (VCG) mechanism
[16] is adopted in different disciplines, and especially in
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economics, to address this problem. In this setting, the mech-
anism generates a payment rule with the aim of incentivizing
the players to report their private information to the regulator.
This information is then used to reach to the social optimum,
see [17] for more details on the topic.

Another methodology for reaching to the social opti-
mum in noncooperative games involves exploiting control-
theoretic tools. In this manner, the players do not report
their private information, but their actions are observed over
time by the regulator. The problem is then regarded as
a feedback control problem where the desired outcome is
the social optimum and the control effort is implemented
through interventions [18]. Devising suitable control laws is
straightforward when the regulator has perfect information
on the game and the payoffs of the players, it becomes much
more intricate when some of the players’ private information
and/or network level parameters are unknown. To overcome
this lack of information, dynamical protocols are proposed in
[18]–[20]. In [18], a dynamic pricing mechanism is devised
that solves the problem for players with separable utility
functions. When the utility functions are non-separable, side
information is used in [19] for convergence to the social
optimum. In particular, the pricing mechanism employs the
utility functions evaluated at the social optimum. In the
context of congestion control, the mechanism presented
in [20] guarantees convergence assuming that the network
manager knows the aggregate flow on each link as well as
the delay-cost experienced by the users.

In this work, we present intervention protocols that can
steer the outcome of quadratic network games to the solution
of the social welfare maximization problem. The players are
selfish and merely interested in maximizing their individual
payoff functions. They do this by choosing their actions using
continuous pseudo-gradient dynamics. The regulator, on the
other hand, attempts to steer the players towards the social
optimum by devising suitable interventions which modify
the marginal returns of the players. We investigate multiple
scenarios resulting from the limited access of the regulator
to game information and the network structure. For each
scenario, we propose a suitable intervention that is able to
steer the players towards the desired social optimum. We
analytically prove convergence of these intervention proto-
cols, and complement our theoretical findings by numerical
examples.

The structure of the paper is organized as follows: The
problem formulation is given in Section II. Section III
presents the intervention protocols that steer the actions of
the players to the social optimum, and provides convergence



guarantees. Numerical examples are provided in Section IV.
Concluding remarks and future research directions are stated
in Section V.

Notation: The set of real numbers is denoted by R. We
denote the standard Euclidean norm by ∥ · ∥. The symbol 0
denotes a vector/matrix of all zeros. Given a vector x ∈ Rn,
we denote its i-th element of by (x)i. For given vectors
x1, · · · , xm ∈ Rn, we use the shorthand notation col(xi) =[
x⊤
1 , · · · , x⊤

m

]⊤
. We write P ≻ 0(≺ 0) to denote that the

matrix P = P⊤ ∈ Rn×n is positive definite (negative
definite). Given a matrix P = P⊤ ∈ Rn×n, we denote
its Frobenius norm by ∥P∥F =

√
Tr(P⊤P ) where Tr( · )

is the trace operator. Moreover, the notation λi(P ) with
i ∈ {1, . . . , n} denotes the eigenvalues of P .

II. PROBLEM FORMULATION

We consider a game with the population of I :=
{1, . . . , n} players/agents that interact repeatedly with a
central regulator as well as with each other according to an
underlying interaction network. We indicate the adjacency
matrix of this network by P ∈ Rn×n where Pij ∈ [0, 1]
denotes the influence of player j’s strategy/action on the
utility function of player i. We assume that the network has
no self loop, thus Pii = 0 for all i ∈ I, and the set of
neighbors of player i is denoted by Ni = {j ∈ I | Pij > 0}.
The interaction network is undirected if Pij = Pji for all
i, j ∈ I, otherwise it is directed.

Each player i is associated with a payoff function
Ui(xi, zi(x), ui) that depends on her own action xi ∈ R,
the aggregate of her neighbors’ actions

zi(x) :=
∑
j∈Ni

Pijxj (1)

with x = col(xi), and an intervention ui ∈ R which will be
determined by the central regulator. We focus our attention
on linear quadratic payoff functions of the form

Ui

(
xi, zi(x), ui

)
= Wi

(
xi, zi(x)

)
+ xiui (2)

with

Wi

(
xi, zi(x)

)
:= −1

2
x2
i + xi

(
azi(x) + bi

)
, (3)

where a ∈ R captures the impact of neighbors’ actions and
bi ∈ R is the standalone marginal return. The payoff function
Wi is used in the literature to model peer effects in social
and economic settings, see e.g. [1], [21], [22]. In addition,
the term xiui is included in (2) to capture the intervention
of the central regulator in modifying the standalone marginal
return bi to bi + ui [8].

The players are noncooperative and merely interested in
maximizing their individual payoff functions by choosing
their actions. This selfish behavior causes loss of efficiency
with respect to the situation in which the players would
cooperate to maximize the total payoff. The central regulator,
on the other hand, is aimed at coordinating the players and
avoiding the efficiency loss. To this end, she modifies the

standalone marginal returns of the players through interven-
tions.

In the next two subsections, we introduce the decision
making process for the players and the regulator.

A. Players’ strategy

Each player aims to maximize her individual payoff func-
tion Ui given the aggregated actions of her neighbors zi(x)
and the current value of the intervention signal ui. To capture
this, we consider that the actions of the players evolve over
time according to the following pseudo-gradient dynamics1:

ẋi(t) =
∂Ui

∂xi

(
xi(t), zi(x(t)), ui(t)

)
, ∀i ∈ I,

where ui(·) is the intervention designed by the regulator.
Noting the definition of zi(x) given by (1) and the fact that
Pii = 0, we can rewrite dynamics above as

ẋi(t) = −xi(t) + a
∑
j∈I

Pijxj(t) + bi + ui(t). (4)

In the case of no intervention, i.e., ui(·) = 0, the
equilibrium of (4) coincides with the Nash equilibrium of
the game2, namely the action profile x̄ satisfying

x̄i ∈ argmax
y∈R

Ui

(
y, zi(x̄), 0

)
, ∀i ∈ I.

This can be written more explicitly as

(I − aP )x̄ = b. (5)

Next we look at the problem from the regulator’s side.

B. Regulator’s objective

The central regulator aims to implement suitable interven-
tions to coordinate the players and maximize the total payoff.
More precisely, she aims at designing the intervention signal
ui(t) such that the actions of the players converge to a social
optimum xopt, defined as a solution of the social welfare
maximization problem:

xopt ∈ argmax
y∈Rn

∑
i∈I

Wi

(
yi, zi(y)

)
, (6)

where y = col(yi) and Wi is given by (3). The necessary and
sufficient condition for existence of a unique social optimum
xopt is given below:

Lemma II.1. The social welfare maximization problem (6)
has a unique solution if and only if

max
i∈I

a λi(P + P⊤) < 1. (7)

Proof. If part: The inequality (7) implies that −I + a(P +
P⊤) ≺ 0, and thus the map x 7→

∑
i∈I Wi

(
xi, zi(x)

)
is

strictly concave and so admits a unique maximizer [26, Prop.
1.1.2].

1See [23], [24] for further applications of continuous pseudo-gradient
dynamics in the context of distributed Nash equilibrium seeking for nonco-
operative games.

2Existence of a Nash equilibrium readily follows from [25, Cor. 4.2].



Only if part: Suppose (7) does not hold. Then, the maximum
eigenvalue of the symmetric matrix −I+a(P+P⊤), denoted
by µ, is nonnegative. Let v ∈ Rn be a corresponding
eigenvector, and consider the social welfare function along
the direction of v, namely the map

α 7→
∑
i∈I

Wi

(
(αv)i, zi(αv)

)
=

1

2
µα2∥v∥2 + αv⊤b,

where (αv)i is the ith element of αv. Clearly, if µ > 0,
then the function grows unbounded as α increases to infinity
and thus, the optimizer does not exist. When µ = 0, then
the matrix −I + a(P + P⊤) is not invertible. This implies
that the gradient of the social welfare function vanishes at
infinitely many points, and thus (6) does not admit a unique
maximizer.

Motivated by Lemma II.1, we impose the following stand-
ing assumption throughout the paper.

Assumption II.2. The adjacency matrix P ∈ Rn×n and the
parameter a ∈ R satisfy maxi∈I a λi(P + P⊤) < 1. •

Remark II.3. The matrix P + P⊤ is symmetric with the
diagonal elements equal to zero. This implies that the matrix
P + P⊤ has only real eigenvalues, and its trace is zero.
Hence,

λmin(P + P⊤) < 0 < λmax(P + P⊤).

It follows from the above inequalities that Assumption II.2 is
satisfied if and only if either (i) a > 0 and a λmax(P+P⊤) <
1 or (ii) a < 0 and a λmin(P + P⊤) < 1. •

As a consequence of Assumption II.2, the social welfare
function on the right hand side of (6) is strictly concave and
thus admits a unique maximizer given by [26, Prop. 1.1.2]

xopt =
(
I − a(P + P⊤)

)−1
b. (8)

Notice that this is different from the Nash equilibrium
given in (5). Next, we aim at designing intervention mecha-
nisms that asymptotically steer the players from the “selfish”
behavior in (5) to the one in (8) which maximizes the social
welfare.

III. INTERVENTION PROTOCOLS

First, we recall that by (4) the action profile evolves
according to the following pseudo-gradient dynamics:

ẋ(t) = (−I + aP )x(t) + b+ u(t). (9)

Note that the matrix −I + aP is Hurwitz since we have
−2I + a(P + P⊤) ≺ 0 (cf. Assumption II.2). Therefore,
under the assumption that the regulator has full access to the
game information, namely the pair (aP, b), a simple static
open-loop intervention u(t) ≡ (I − aP )xopt − b suffices
for convergence to xopt. In the sequel, we look into the
scenarios where such perfect information is not available
to the regulator, hence more elaborate interventions are
required.

A. Static feedback intervention

When the regulator has complete knowledge about the
network and the impact of the players on each other, i.e., aP ,
a static state feedback intervention can be adopted to ensure
convergence to the social optimum. This is formalized in the
following proposition.

Proposition III.1. Consider the pseudo-gradient dynamics
in (9). Then, under the static feedback intervention u(t) =
aP⊤x(t), the action profile x(t) exponentially converges to
the social optimum xopt given by (8).

Proof. The proof directly follows from the expression of xopt
in (8) and the fact that the matrix −I+a(P+P⊤) is negative
definite (cf. Assumption II.2).

B. Dynamic intervention with estimated social optimum

Next we consider the scenario where the regulator is not
aware of the network information aP but has a reliable
estimate of the social optimum xopt. In this case, the regulator
can resort to an integral control-based intervention

u̇(t) = −
(
x(t)− xs

)
, (10)

where xs ∈ Rn is an estimation of the social optimum. Note
that the above mechanism does not require any knowledge
on the game parameters aP and b. We provide convergence
guarantees for this integral control in the following proposi-
tion:

Proposition III.2. Consider the pseudo-gradient dynamics
(9). Then, under the intervention (10), the action profile x(t)
exponentially converges to xs.

Proof. Let u∗ := (I − aP )xs − b, and consider the change
of coordinates (x, u) 7→ (x̃, ũ) with x̃ = x − xs and
ũ = u − u∗. In these coordinates, the overall closed-
loop dynamics, consisting of (9) and (10), takes the form
col( ˙̃x, ˙̃u) = A col(x̃, ũ) where

A =

[
−I + aP I

−I 0

]
.

We prove stability by finding a matrix M = M⊤ ≻ 0 such
that the Lyapunov inequality A⊤M+MA ≺ 0 holds. Given
some κ > 0, we define

M :=

[
I −κI

−κI I

]
.

Note that M ≻ 0 for any κ ∈ (0, 1). In addition, we have
the following:

A⊤M +MA =

[
−2(1− κ)I + a(P + P⊤) κ(I − aP⊤)

κ(I − aP ) −2κI

]
.

We use the Schur complement to deduce that the above
matrix is negative definite if and only if

κ > 0, −2(1−κ)I+a(P+P⊤)+
1

2
κ(I−aP⊤)(I−aP ) ≺ 0.

It then follows from −I + a(P + P⊤) ≺ 0 (cf. Assumption
II.2) that there exists a sufficiently small κ > 0 such that the



above inequality holds. As a result, the Lyapunov inequality
is satisfied, and the dynamics col( ˙̃x, ˙̃u) = A col(x̃, ũ) is
exponentially stable. This means that the solution (x(t), u(t))
converges to (xs, u

∗) exponentially fast, which concludes the
proof.

C. Adaptive intervention with known standalone marginal
returns

Recall that in case the regulator knows aP or the social
optimum xopt, she could steer the players to the social
optimum by implementing the previously discussed inter-
ventions. Here, we shift our focus to the case where both
aP and xopt are unknown to the regulator, and she merely
has knowledge about the individual standalone marginal
returns of the players b. It turns out that this substantially
complicates the problem faced by the regulator. We restrict
our attention in this subsection to the case of undirected
networks, i.e. P = P⊤.

A natural approach to tackle this problem is to resort
to adaptive control techniques which potentially allow to
compensate for lack of complete knowledge on the system
dynamics. However, there are certain obstacles that hinder
an application of standard adaptive control schemes. First, a
control design based on the regulation error x(t) − xopt is
not feasible since xopt is unknown. A second attempt would
be to try to estimate xopt by using a reference model such
as ẋm(t) = (−I + 2aP )xm(t) + b. However, while xm(t)
converges to xopt (see Proposition III.1 with P = PT ), the
reference model is not implementable as the network matrix
aP is unknown.

To overcome these challenges, we propose the adaptive
feedback intervention protocol

u(t) = K(t)x(t) (11)

with an adaptive gain matrix K(t) determined by the fol-
lowing extended dynamics:

ż(t) = −z(t) +K(t)x(t) + b+ u(t), (12a)

ẇ(t) = −w(t) + e(t)x⊤(t)x(t), (12b)

K̇(t) = e(t)x⊤(t), (12c)

where
e(t) := x(t)− z(t)− w(t).

Note that the intervention only uses information on b, and
no knowledge on neither aP nor xopt is required. The
first dynamics (12a) aims to replicate the pseudo-gradient
dynamics (9) and generate z(t) such that it tracks the action
profile x(t). The second dynamics (12b) is included for
technical reasons and is needed to guarantee boundedness of
all solutions. This is formally stated in the following lemma.3

Lemma III.3. Consider the pseudo-gradient dynamics (9)
and let P = P⊤. Then, under the adaptive feedback

3The proof of this technical result is quite elaborate and is dropped due
to space constraints. The complete proof will be reported in an extended
version of this work.

intervention given by (11) and (12), all solutions of the
closed-loop system are bounded.

The next result establishes convergence to the social
optimum xopt.

Theorem III.4. Let P = P⊤ and consider the pseudo-
gradient dynamics (9) interconnected with the adaptive feed-
back intervention (11), (12). Then, the action profile x(t)
asymptotically converges to the social optimum xopt given
by (8).

Proof. Let ξ := (x, e,Ψ) with Ψ = K − aP . Then, bearing
in mind (9), (11) and (12), ξ admits the following dynamics

ẋ = (−I + 2aP )x+ b+Ψx, (13a)

ė = −e−Ψx− ex⊤x, (13b)

Ψ̇ = ex⊤. (13c)

We proceed by following similar arguments as in the proof
of the LaSalle’s invariance principle [27, Thm. 4.4], but the
proof is tailored for a single (yet arbitrary) trajectory. Let
ξ0 := (x0, e0,Ψ0) with some x0, e0 ∈ Rn and Ψ0 ∈ Rn×n,
and ξ(t) be a solution starting from the initial condition
ξ(0) = ξ0. It follows from Lemma III.3 that this solution
is bounded. Thus, there exists a compact set D such that
ξ(t) ∈ D for all t ≥ 0. It also follows from [27, Lem. 4.1]
that the positive limit set Ω of ξ(t) is nonempty, compact,
and invariant. Moreover, ξ(t) approaches Ω as t tends to
infinity.

We now consider the function

V (ξ) :=
1

2
∥e∥2 + 1

2
∥Ψ∥2F,

where we recall that ∥Ψ∥F is the Frobenius norm. The
derivative of V along the solutions of (13) is

V̇ = −∥e∥2 − e⊤Ψx− ∥e∥2∥x∥2 +Tr(Ψ⊤ex⊤)

= −∥e∥2 − ∥e∥2∥x∥2,
(14)

where the last equality is obtained using e⊤Ψx =
Tr(Ψ⊤ex⊤). Therefore, we have V ≥ 0 and V̇ ≤ 0 which
implies that V (ξ(t)) has a limit V∞ ≥ 0 as t → ∞. Pick any
point ξ′ ∈ Ω, then there is a sequence {tn}, with tn → ∞
as n → ∞, such that ξ(tn) → ξ′ as n → ∞. We obtain
from continuity of V that V (ξ′) = limn→∞ V (ξ(tn)) =
V∞. Therefore, since ξ′ is chosen arbitrary, we deduce that
V (ξ) = V∞ for all ξ ∈ Ω, which means that on the
invariant set Ω, the function V is constant. Moreover, we
have V̇ (ξ(t)) = 0 for all ξ(t) ∈ Ω. Let E := {ξ ∈ D |
V̇ (ξ) = 0}, then we have Ω ⊂ E. Now let M be the largest
invariant set inside E, subsequently we have the following
relations

Ω ⊂ M ⊂ E ⊂ D.

Noting that ξ(t) approaches Ω as t → ∞, we obtain that
ξ(t) approaches M as t → ∞.

The last step is to find the set M . Note from the definition
of E and (14) that E = {ξ ∈ D | e = 0}. Thus, on the
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Fig. 1. The directed network.

invariant set M , the dynamics of (13) reads as

ẋ = (−I + 2aP )x+ b,

0 = −Ψx,

Ψ̇ = 0.

Noting that −I + 2aP is Hurwitz as a consequence of
Assumption II.2, the largest invariant set in E is given by

M =
{
ξ ∈ D | x = xopt, e = 0, Ψxopt = 0

}
.

Consequently, we conclude that x(t) converges to xopt as
desired.

IV. ILLUSTRATIVE EXAMPLES

In this section, we present two illustrative numerical exam-
ples and demonstrate the performance of our interventions.

A. Static feedback and dynamic interventions

We consider a population of I = {1, . . . , 6} players that
interact over the weighted directed graph shown in Fig. 1.
The width of each link and its number indicate the weight
of each link, and the numbers next to the nodes are their
corresponding status-quo standalone marginal returns. The
payoff function of each player is given by (2) with a = −0.2.
The players choose their actions according to the dynamics
(9) with random initial condition.

To steer the actions of the players to the social optimum,
we use the static feedback and the dynamic interventions.
For the former, we assume that the regulator knows aP to
implement the intervention u(t) = aP⊤x(t). In the latter
given by u̇(t) = −(x(t) − xs), we choose a random initial
condition and set xs = xopt by assuming that the regulator
knows the value of the social optimum. Note that we have
chosen xs = xopt merely for the sake of illustration of
the results, but convergence to any arbitrary choice of xs

is guaranteed (cf. Proposition III.2). The players’ actions
under the static feedback and the dynamic interventions are
illustrated in Fig. 2. By implementing these mechanisms, the
regulator can steer the action profile to the social optimum
as demonstrated in Fig. 3.

B. Adaptive intervention

In this example, we illustrate convergence to the social
optimum under the adaptive intervention (11), (12). We
consider a similar network game to the previous example
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Fig. 2. Action profile under static feedback and dynamic interventions.
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Fig. 3. Distance of action profile to social optimum under static feedback
and dynamic interventions.

with a = −0.2, but the underlying network of the game is
undirected here, as shown in Fig. 4. We randomly choose the
initial condition of the overall system, made of the pseudo-
gradient dynamics (9) and the adaptive intervention (11),
(12). Fig. 5 depicts the resulting actions of the players. As
shown in Fig. 6, the actions converge to the desired social
optimum under the proposed adaptive intervention.

V. CONCLUSIONS

We considered the problem of steering the outcome of
noncooperative quadratic network games to the social opti-
mum. In our setup, the players use pseudo-gradient dynamics
to choose their actions and maximize their individual payoffs.
On the other hand, the regulator is aimed at choosing suitable
interventions and regulating the actions of the players to
the social optimum. We analyzed multiple scenarios where
the regulator has access to limited information on the game
and provided different intervention protocols that solve the
problem.
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Fig. 5. Action profile under adaptive intervention.

Future research will explore extending the results to net-
work games with general payoff functions, as well as includ-
ing budget constraints on the interventions. Other research
questions include interventions that are applied only to a
subset of players as well as social welfare maximization for
players with constrained actions.
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